Mostafa Youssef

Assistant Professor Department of Mechanical Engineering The American University in Cairo Email: mostafa.youssef@aucegypt.edu

EDUCATION

Massachusetts Institute of Technology, Cambridge, USA

Ph.D., Nuclear Science and Engineering, September 2013

M.S., Nuclear Science and Engineering, June 2010

Alexandria University, Alexandria, Egypt

B.S., Nuclear and Radiation Engineering, June 2006

RESEARCH INTERESTS

Thermodynamics– Defects – Density functional theory – Semiconductor physics – Materials interfaces – Diffusion – Charge transfer – Electric conductivity – Thermal conductivity – Water – Phase transitions

PROFESSIONAL APPOINTMENT

- 1. The American University in Cairo, Department of Mechanical Engineering, New Cairo, Egypt. Assistant Professor, July 2017-Present.
- 2. Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, USA. Research Affiliate, August 2016-Present.
- 3. Massachusetts Institute of Technology, Laboratory for Material Chemomechanics, Cambridge, USA. **Postdoctoral Associate**, February 2015-August 2016.
- 4. Massachusetts Institute of Technology, Laboratory for Electrochemical Interfaces, Cambridge, USA. **Postdoctoral Associate**, October 2013-August 2016.
- 5. Massachusetts Institute of Technology, Cambridge, USA. **Research Assistant**, September 2008-Septemper 2013.
- 6. Alexandria University, Alexandria, Egypt. Demonstrator, September 2006- December 2007.

TEACHING EXPERIENCE

- 1. The American University in Cairo, New Cairo, Egypt. **Instructor** for ENGR2122 Fundamentals of Fluid Mechanics, ENGR3202 Engineering Analysis and Computation I, ENGR3322 Fundamentals of Thermofluids, September 2017 December 2017.
- 2. Massachusetts Institute of Technology, Cambridge, USA. **Guest Lecturer** in 22.70 Materials for Nuclear Applications, May 2011 and May 2014.
- 3. The National Institute of Standard and Technology, Gaithersburg, USA. **Guest Lecturer** in 21st NIST Computer Modeling Workshop, August 2010.
- 4. Alexandria University, Alexandria, Egypt. **Demonstrator** for, Thermodynamics, Modern Physics, Nuclear Physics, Nuclear Reactor Physics, Mathematical Physics, September 2006 December 2007.

MENTORING

- 1. Massachusetts Institute of Technology, Cambridge, USA. Co-mentoring graduate students:
- Jessica G. Swallow (with Prof. Krystyn J. Van Vliet, September 2015-August 2016). Scope; studying the interplay between lattice defects and strain in doped CeO₂. The work is part of Jessica's PhD.
- Minh Dinh (with Prof. Bilge Yildiz, September 2015-August 2016). Scope; training on methods of modern theory of polarization and application to vacancies in ferroelectric ZrO₂. The work is part of Minh's PhD.
- Jing Yang (with Prof. Bilge Yildiz, September 2014-August 2016). Scope; training on density functional theory methods and concepts of defect chemistry, and application on interfacial phenomena at oxides hetero-interfaces. The work resulted in a peer-reviewed publication, two conference presentations, and is part of Jing's PhD.
- Ming Yang (with Prof. Bilge Yildz, October 2013-Ausgut 2015). Scope; training on density functional theory methods and concepts of defect chemistry, and application on doping and diffusion in ZrO₂. The work resulted in a peer-reviewed publication and M.S. thesis of Ming.
- Uuganbayar Otgonbaatar (with Prof. Bilge Yildiz, September 2011-June 2013). Scope; training on density functional theory methods and concepts of defect chemistry, and application on doping ZrO₂ with Nb. The work was concluded in a peer-reviewed and M.Eng. thesis of Uuganbayar.

PEER-REVIEWED PUPLICATIONS

- 1. <u>M. Youssef</u>, K. J. Van Vliet, and B. Yildiz, "Polarizing oxygen vacancies in insulating metal oxides under high electric field" **submitted**.
- 2. <u>M. Youssef</u>, B. Yildiz, and K. J. Van Vliet, "Thermomechanical stabilization of electron small polarons in SrTiO₃ assessed by the quasiharmonic approximation" **Physical Review B** 95, 161110(**R**) (2017).
- 3. J. Yang, <u>M. Youssef</u>, and Bilge Yildiz, "Predicting point defect equilibria across oxide heterointerfaces: model system of ZrO₂/Cr₂O₃" **Physical Chemistry Chemical Physics** 19, 3869 (2017).
- 4. <u>M. Youssef</u>, Ming Yang, and B. Yildiz, "Doping in the valley of hydrogen solubility: A route to designing hydrogen resistant zirconium alloys" **Physical Review Applied** 5, 014008 (2016).
- 5. A. Aryanfar, J. Thomas, A. Van der Ven, D. Xu, <u>M. Youssef</u>, J. Yang, B. Yildiz, and J. Marian, "Integrated computational modeling of water side corrosion in zirconium metal clad under nominal LWR operating conditions" **JOM** 68, 2900 (2016).
- 6. U. Otgonbaatar, W. Ma, <u>M. Youssef</u>, and B. Yildiz, "Effect of niobium on the defect chemistry and oxidation kinetics of tetragonal ZrO₂" **The Journal of Physical Chemistry C** 118, 20122 (2014).
- 7. <u>M. Youssef</u> and B. Yildiz, "Predicting self-diffusion in metal oxides from first-principles: The case of oxygen in tetragonal ZrO₂" **Physical Review B** 89, 024105 (2014).
- 8. <u>M. Youssef</u> and B. Yildiz, "Hydrogen defects in tetragonal ZrO₂ studied using density functional theory" **Physical Chemistry Chemical Physics** 16, 1354 (2014).
- 9. <u>M. Youssef</u>, R. J.-M. Pellenq, and B. Yildiz, "Docking ⁹⁰Sr radionuclide in cement: An atomistic modeling study" **Physics and Chemistry of the Earth, Parts A/B/C** 70-71, 39 (2014).
- 10. <u>M. Youssef</u> and B. Yildiz, "Intrinsic point-defect equilibria in tetragonal ZrO₂: Density functional theory analysis with finite-temperature effects" **Physical Review B** 86, 144109 (2012).
- 11. <u>M. Youssef</u>, R. J.-M. Pellenq, and B. Yildiz, "Glassy nature of water in an ultraconfining disordered material: The case of calcium-silicate-hydrate" **Journal of the American Chemical Society** 133, 2499 (2011).

CONFERENCE PRESENTATIONS

- 1. <u>M. Youssef</u>, R. J.-M. Pellenq, and B. Yildiz, "Chloride ion binding to the surface of calcium-silicatehydrate" Materials Research Society Fall Meeting, Boston, USA, 2009 *Poster*.
- 2. <u>M. Youssef</u> and B. Yildiz, "Immobilization mechanisms of dissolved ionic species in cement matrix" Materials Research Society Spring Meeting, San Francisco, USA, 2010 *Oral.*
- 3. <u>M. Youssef</u>, R. J.-M. Pellenq, and B. Yildiz "Immobilization mechanisms of radioactive species in cement matrix: The case study of ⁹⁰Sr" The 3rd International Forum on Multidisciplinary Education and Research for Energy Science, Ishigaki-jima, Japan, 2010 *Oral*.
- 4. <u>M. Youssef</u> and B. Yildiz, "Effect of Li on zirconium alloy corrosion- Li insertion, and ion migration in ZrO₂" Materials Research Society Fall Meeting, Boston, USA, 2011 *Oral.*
- 5. <u>M. Youssef</u> and B. Yildiz, "ZrO₂ passive layer stability loss in the presence of hydrogen defects-Connections to pit initiation" Electrochemical Society 222nd Meeting, Honolulu USA, 2012 *Oral*.
- 6. <u>M. Youssef</u> and B. Yildiz, "Mechanical degradation of ZrO₂ passive layer in the presence of hydrogen defects" Materials Research Society Fall Meeting, Boston, USA, 2012 *Poster*.
- 7. <u>M. Youssef</u> and B. Yildiz, "Mechanistic modeling of corrosion and hydrogen pickup: density functional theory analysis of oxygen diffusion and hydrogen defects in ZrO₂" International Workshop on Structural Materials for Innovative Nuclear Systems, Idaho Falls, USA, 2013 *Poster*.
- 8. <u>M. Youssef</u> and B. Yildiz, "Designing hydrogen pickup resistant zirconium alloys starting from electrons" Materials Research Society Fall Meeting, Boston, USA, 2013 *Oral*.
- <u>M. Youssef</u> and B. Yildiz, "The role of transition metal dopants in hydrogen pickup kinetics at the ZrO₂/H₂O interfaces: A density functional theory study", TMS 143rd Meeting, San Diego, USA, 2014 Oral.
- 10. <u>M. Youssef</u> and B. Yildiz, "The volcano of hydrogen pickup in zirconium alloys explained by p-type doping of the passive oxide layer" Multiscale Materials Modeling meeting, Berkeley, USA, 2014 *Oral.*
- 11. <u>M. Youssef</u> and B. Yildiz, "Understanding pitting in the passive layer of carbon steel starting from first principles study of its point defects" Multiscale Materials Modeling meeting, Berkeley, USA, 2014 *Poster*.
- 12. <u>M. Youssef</u> and B. Yildiz, "Doping on the valley of hydrogen solubility: A route to design hydrogen resistant zirconium alloys" Materials Research Society Fall Meeting, Boston, USA, 2014 *Oral.*
- 13. <u>M. Youssef</u> and B. Yildiz, "Point defect equilibria and diffusion in siderite (FeCO₃) passive film studied using density functional theory" Electrochemical Society 227th Meeting, Chicago USA, 2015 *Oral.*
- 14. <u>M. Youssef</u>, B. Yildiz, and K. J. Van Vliet, "Thermodynamics and electronic Structure of SrTiO₃ ionic and electronic defects" Materials Research Society Fall Meeting, Boston, USA, 2015 *Oral*.
- 15. <u>M. Youssef</u>, M. Yang, B. Yildiz, "Doping on the valley of hydrogen solubility: A route to design hydrogen resistant zirconium alloys" TMS 145th Meeting, Nashville, USA, 2016 *Oral*.
- 16. <u>M. Youssef</u>, K. J. Van Vliet, and B. Yildiz, "Hydrostatic stress-temperature diagrams for electronic charge carriers in SrTiO₃" Electrochemical Society 229th Meeting, San Diego USA, 2016 *Oral.*
- 17. <u>M. Youssef</u>, B. Yildiz, K. J. Van Vliet, "Thermodynamics and chemomechanics of electron polarons in SrTiO₃" Materials Research Society Fall Meeting, Boston, USA, 2016 *Oral*.

SYNERGISTIC ACITIVITIES

1. Awards

- Swan Top Student Prize, Alexandria University, Egypt, 2007.
- Egypt's Professional Engineers Syndicate Top Student Award, 2006.
- Egypt Award for Academic Distinction, Faculty of Engineering, Alexandria University, 2001-2006.

2. Invited Talks

• "Predicting charged defect equilibria using density functional theory" Talk in Professor Harry L. Tuller group at MIT, Cambridge, USA, 2014.

3. Conference Organization

- Session chair, Symposium: Electro-Chemo-Mechanics, Multiscale Materials Modeling meeting, Berkeley, USA, 2014.
- Session chair, Symposium: Computational Thermodynamics and Kinetics, TMS 145th Meeting, Nashville, USA, 2016.
- Session chair, Symposium: Mechano-Electro-Chemical Coupling in Energy Related Materials and Devices 2, Electrochemical Society 229th Meeting, San Diego USA, 2016.

4. Journal Reviewer

• Journal of Electroceramics; Physical Chemistry Chemical Physics; Acta Materialia.

5. Computational Grants

- PI Proxy, "Density Functional Theory Study of Complex Oxides under Mechanical Stresses and Electric Fields", 1,250,000 Service Units, Project m2309, DOE-NERSC, January 2017- January 2018.
- PI, "Density Functional Theory Study of Defect Thermodynamics and Kinetics in Compound Semiconductors", 1,149,181 Service Units whose value is \$39,780,72, Project DMR140065, NSF-XSEDE, July 2015- December 2016.
- PI Proxy, "Density Functional Theory Study of Complex Oxides under Mechanical Stresses and Electric Fields", 1,250,000 Service Units, Project m2309, DOE-NERSC, January 2016- January 2017.
- PI, "Density Functional Theory Study of The Thermodynamics and Kinetics of Pitting in Iron Passive Layer", 557,473 Service Units whose value is \$19,299.48, Project DMR140065, NSF-XSEDE, July 2014-June 2015.